

NABL

National Accreditation Board for Testing and Calibration Laboratories

(An Autonomous Body under Department of Science & Technology, Govt. of India)

CERTIFICATE OF ACCREDITATION

ACTION ENGINEERS

has been assessed and accredited in accordance with the standard

ISO/IEC 17025:2005

"General Requirements for the Competence of Testing & Calibration Laboratories"

for its facilities at

Vadsar Bridge (West End), Vadodara, Gujarat in the discipline of

ELECTRO-TECHNICAL CALIBRATION

(To see the scope of accreditation of this laboratory, you may also visit NABL website www.nabl-india.org)

Certificate Number

C-0776

Issue Date

05/12/2015

Valid Until

04/12/2017

This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the additional requirements of NABL.

Signed for and on behalf of NABL

Avijit Das

Program Manager

Analelia Anil Balia

Anii Relia

Prof. S. K. Joshi

S.x. Josh

Chairman

NABL SCOPE OF ACCREDITATION

Laboratory

Action Engineers, Vadsar Bridge (West End), Vadodara, Gujarat

Accreditation Standard

ISO/IEC 17025:2005

Discipline

Electro-Technical Calibration

Issue Date

05.12.2015

Certificate Number

C-0776

Valid Until

04.12.2017

Last Amended on

Page

1 of 2

	Quantity Measured / Instrument	Range/ Frequency	*Calibration Measurement Capability (±)	Remarks
I.	SOURCE			
1.	RESISTANCE [#] (For Insulation Tester)	$1~\mathrm{G}\Omega$ to $100~\mathrm{G}\Omega$	1.4 % to 5.1 %	Resistance Box (Discrete Values)
H.	MEASURE			
1.	DC VOLTAGE#	1 mV to 100 mV 100 mV to 1000 V	0.45 % to 0.01 % 0.01 %	Using 6½ DMM & Fluke 8846A By Direct / Comparison Method
	DC VOLTAGE ⁵ DC VOLTAGE ⁵	>1 kV to 70 kV >1 kV to 100 kV	2.2 % to 1.8 % 2.2 % to 1.8 %	Using HV Divider & DMM (UDAY) by Direct / Comparison Method
2.	AC VOLTAGE [#]	50 Hz 1 mV to 1 V 1 V to 1000 V	4.8 % to 0.12 % 0.12 %	Using 6½ DMM By Direct / Comparison Method
	AC VOLTAGES AC VOLTAGE*	>1 kV to 50 kV >1 kV to 100 kV	2.3 % 2.7 % to 2.3 %	Using HV Divider & DMM By Direct / Comparison Method
3.	DC CURRENT [#]	10 μA to 100 μA 100 μA to 1 A 1 A to 10 A	0.36 % to 0.1 % 0.1 % 0.1 % to 0.2 %	Using 6½ DMM By Direct / Comparison Method
		10 A to 100 A 100 A to 500 A	1.0 % to 0.62 % 0.62 % to 0.75 %	Using 6½ DMM & DC Shunt By Direct / Comparison Method
1.	AC CURRENT [♯]	50 Hz 100 μA to 100 mA 100 mA to 10 A 10 A to 1000 A	0.5% to 0.2% 0.2% to 0.3% 0.52%	Using 6½ DMM By Direct / Comparison Method Using 6½ DMM & CT by Direct / Comparison Method
5.	RESISTANCE [#] (2 Wire)	1 Ω to 100 Ω 100 Ω to 10 ΜΩ 10 ΜΩ to 100 ΜΩ	0.7 % to 0.02 % 0.02 % to 0.05 % 0.05 % to 1.0 %	Using 6½ DMM by Direct / Comparison Method
	Naveen Jangra	100 MΩ to 1 GΩ	1.0 % to 3.0 %	Avijit Das

Naveen Jangra Convenor Avijit Das Program Manager

NABL SCOPE OF ACCREDITATION

Laboratory Action Engineers, Vadsar Bridge (West End), Vadodara, Gujarat

Accreditation Standard ISO/IEC 17025:2005

Discipline Electro-Technical Calibration Issue Date 05.12.2015

Certificate Number C-0776 Valid Until 04.12.2017

Last Amended on - Page 2 of 2

	Quantity Measured / Instrument	Range/ Frequency	*Calibration Measurement Capability (±)	Remarks
6.	LOW RESISTANCE [#] (4 Wire)	$0.1~\text{m}\Omega$ to $20~\Omega$	0.45 % to 0.1 %	Using 6½ DMM by Direct / Comparison Method
7.	FREQUENCY*	10 Hz to 1 MHz	0.06 % to 0.02 %	Using 6½ DMM by Direct / Comparison Method
8.	CAPACITOR ^{\$} (DC)	1 nF to 1 mF	5.5 % to 2.2 %	Using 6½ DMM by Direct / Comparison Method
9.	AC VOLTAGE RATIO [#]	50 Hz 1 to 1000	0.6 % to 0.5 %	Using 6½ DMM by Direct / Comparison Method
10). AC CURRENT RATIO	50 Hz 1 to 1000	2.3 %	Using 6½ DMM & CT by Direct Comparison Method
11	. TIME#	1 ms to 2 Hrs.	0.1 ms to 4.2 s	Using 6½ DMM & Time Interval Meter by direct/comparison metho
12	. TEMPERATURE SIMULAT Temperature Indicator / Con Calibrator/ Scanner / Logger	troller / Recorder /		
	RTD	(-)100 °C to 600 °C	0.15 °C	Using 6½ DMM by Direct /
	J - Type Thermocouple	(-)100 °C to 900 °C	0.20 °C	Comparison Method
	K - Type Thermocouple	(-)100 °C to 1300 °C	0.20 °C	
	R - Type Thermocouple	0 °C to 1600 °C	1.1 °C	
	S - Type Thermocouple	0 °C to 1600 °C	1.1 °C	
	B - Type Thermocouple	300 °C to 1600 °C	0.8 °C	
	T - Type Thermocouple	(-)200 °C to 400 °C	0.8 °C	
	E - Type Thermocouple N - Type Thermocouple	(-)200 °C to 1000 °C (-)200 °C to 1300 °C	0.2 °C 0.2 °C	
	14- Type Thermocoupie	(-)200 C to 1300 C	0.2	

^{*} Measurement Capability is expressed as an uncertainty (±) at a confidence probability of 95%

Naveen Jangra Convenor Avijit Das Program Manager

SOnly in Permanent Laboratory

^{*}Only for Site Calibration

[&]quot;The laboratory is also capable for site calibration however, the uncertainty at site depends on the prevailing actual environmental conditions and master equipment used.